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Correlating the plastic strain ratio with 
ultrasonic velocities in textured metals 

J. A. S Z P U N A R ,  D. C. H I N Z  
Department of Metallurgical Engineering, McGi/! University, Montreal, Canada 

A method for predicting the anisotropy of the plastic strain ratio from measurements of ultra- 
sonic velocities is proposed. The calculations are based on the assumption that both the 
plastic strain ratio and the ultrasonic velocities display the statistical symmetries of the crystal 
orientation distribution function (ODF). The proposed formula is based on a theoretical calcu- 
lation of the anisotropy of the R value and the ultrasonic velocities for 28 different textures. 

1. I n t r o d u c t i o n  
The ability to form metals into useful shapes is often 
dictated by their microstructure and texture. For 
planar anisotropic sheets, the plastic strain ratio, R, 
varies with the tensile direction and is associated with 
the earing behaviour in deep drawing applications. 

The prediction of R anisotropy in textured metals 
has been studied extensively, resulting in considerable 
literature on this subject. The method most generally 
employed consists of calculating the Taylor factor 
M ( q )  by means of the classical Bishop and Hill 
approach [1]. The orientation distribution function 
(ODF) is then used as a weighting factor in the pre- 
diction of the plastic property of interest. Such theor- 
etical predictions lead to reasonably good agreement 
with the experimental plastic strain ratio, for example 
Bunge [2], Szpunar [3], and Semiatin et al. [4]; 
although Dabrowski et al. [5] observed fairly large 
discrepancies in an aluminium-killed steel. 

The anisotropy of the plastic strain ratio can be 
obtained from texture data, but, because X-ray 
texture measurements are often difficult, attempts 
have been made to correlate the bulk ultrasonic vel- 
ocities with the anisotropy of the R factor. Bussiere 
et al. [6] have assumed that there exists a linear relation- 
ship between R and  the bulk, longitudinal and shear 
wave velocities. The resulting regression equations 
also contain terms involving the elastic constants. 

A different approach towards a correlation of the 
plastic strain ratio and the anisotropy of ultrasonic 
wave velocities is proposed in this paper. We begin 
first by describing the theories used for the calculation 
of the R factor and ultrasonic velocity anisotropy, 
forming the basis of our subsequent studies. 

2. Calculation of R-value anisotropy in 
textured metals 

Quantitative theories of plasticity are being developed 
on the basis of the ODF formalism. Theoretical 
prediction of plastic deformation also requires a 
detailed knowledge of the operative mechanism of 
deformation as well as a consistent deformation 
theory. Such theories are generally classified as upper 
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bound, like that of Taylor [7], or lower-bound, derived 
from a Sachs [8] approach. Theoretical predictions 
have already been tested on various materials and 
although the agreement with experiment is often 
satisfactory, deviations of more than 25% are not 
uncommon, One particular disadvantage of these 
theories is the lengthy and time-consuming calcu- 
lations required. 

Montheillet et al. [9] have recently proposed a 
theory known as the continuum mechanics of textured 
polycrystals (CMTP), which provides a simple way 
to quantify the texture and the plastic anisotropy 
relationship. This theory and its applications were 
examined and discussed by Lequeu [10] in his recent 
work and the reader is referred to the original paper 
[11] for the description of the method. It is assumed 
that the yielding behaviour of textured polycrystals 
can be expressed by a continuous yield function of 
the Hill [12] type. The anisotropy described by this 
function is referred to the ~1 0 0) axes of the crystal 
representing the ideal orientation. In order to calcu- 
late the anisotropy of the plastic strain ratio a best fit 
determination of the yield function and the crystal- 
lographic yield surfaces has to be performed for b c c 
and fcc  crystals. 

The crystallographic yield surfaces contain infor- 
mation about the active slip system, usually {1 1 1} 
(1 1 0)  for fcc  crystals and {1 1 0} ~ 1 1 1) for bcc  
metals. The yield function is then expressed in the 
specimen reference frame and then the plastic proper- 
ties of interest can be expressed as a function of 
various ideal orientations. Such a mathematical treat- 
ment leads finally to the determination of the plastic 
strain ratio. There is a reasonable agreement between 
experiment and theory [10]. Theoretical calculations 
are, however, limited to materials which exhibit strong 
texture, justifying the assumption of an ideal orien- 
tation. More complex texture can be treated as a 
suitably weighted superposition of various ideal 
orientation components. 

Following the method just described, the aniso- 
tropy of the R value in the plane of the sheet was 
calculated for 28 different ideal orientations in steel, 
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aluminium, brass and copper. Textures were defined 
using the (hkI) [uvw] indices displaying a gaussian 
spread of 5 ~ . 

3. Ultrasonic velocit ies in textured 
materials 

Sound is transmitted through solids in several ways, 
depending on the shape, size and structure of the 
material. In anisotropic materials, the velocity of 
sound varies with direction. Acoustic waves can 
propagate through the bulk or along the surface of 
solids. In this report only bulk waves are being con- 
sidered. The calculation of the ultrasonic velocities 
involves the averaging of the elastic constants over 
the crystal orientation distribution function. Several 
possible methods can be employed for such calcu- 
lations, the most common of which are due to Voigt, 
Reuss and Hill. Following the assumption that the 
stresses in every grain are the same, we obtain the 
Reuss approximation. The Voigt method assumes the 
uniformity of strain across the grain boundaries. 

The first two methods give upper and lower bounds 
for the elastic constants. Kroner [13] and Morris [14] 
proposed a more realistic calculation but the results 
obtained are very close to the Hill average [15]. The 
method used for the velocity calculation follows the 
procedure described by Sayers [16] making use of 
polycrystal elastic constants. 

Our calculations of the elastic constants were per- 
formed using the Hill approach and then the ultrasonic 
velocities were obtained as solutions of the Christoffel 
equation (Musgrave [17]). The same four metals and 
28 different ideal orientations were analysed. 

4. Me thod  for predicting the anisotropy 
of the plastic-strain ratio f rom 
measurements of ultrasonic 
velocit ies 

Both the anisotropy of the plastic strain ratio and of 
the ultrasonic velocities can be theoretically calculated 
for materials of known texture, The results of such 
predictions, however satisfactory, have still to be 
improved. 

For the purpose of our discussion of the correlation 
between the plastic strain ratio and the ultrasonic 
velocities, we assume that the anisotropy of each is 
known. Such knowledge can be based on experiment 
or, as here, be derived from theory. The main argu- 
ment for the use of theoretical values for the aniso- 
tropy is the difficulty in obtaining materials having a 
variety of theoretically possible textures. Such a 
variety is necessary for verifying a model involving 
correlations of the anisotropy of various properties. 

Theoretically, both crystal symmetry and orien- 
tation distribution function (ODF) symmetries are 
responsible for the anisotropy of physical properties. 
It is well known (Neumann's Principle) that the sym- 
metry elements of any physical property must include 
the symmetry elements of the point group of the crys- 
tal. The crystal symmetry may, therefore, decide the 
anisotropy of physical properties. In a similar manner, 
texture-related properties should also display the 
statistical symmetries of the ODF. 
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Mathematically, the distribution of crystallites 
in a textured material is described by the following 
function. 

oo M(l) N(I) 

f(O, O, 02) = E E E Cff Tff (O, d2, O2) 
l=0 #=1 v= l  

where (~ ,  ~b, t)2) = g are the Euler angles defining 
the orientation of the grain in the specimen reference 
frame. The Cff are expansion coefficients and the ~Fff 
are generalized spherical harmonics, symmetrized 
according to the specimen and crystal symmetries. 
Physically, the Cff represent the volume fraction of 
grains displaying the symmetry defined by the ~F} 'v(g). 

If texture is the only reason for anisotropy, the 
symmetry of the physical properties is related to the 
symmetries represented by the low order T/'V(g) 
texture functions, For example, if the grain orien- 
tation distribution has a four-fold axis, so should the 
physical property. The strength of the four-fold 
anisotropy will, therefore, be represented by the value 
of the corresponding Cff coefficient. Of particular 
importance are the coefficients Ca ~2 and C 14 which 
describe the texture contributions to second- and 
fourth-order terms in the anisotropy of the physical 
property. A linear relationship should, therefore, exist 
between the order of the anisotropy of the physical 
property and the C4 t~ texture coefficient which describes 
this order. 

Bunge [2] has demonstrated that such a relationship 
exists between the elastic anisotropy of a rolled copper 
sheet and the corresponding C~ v coefficients. However, 
in the case of the R-value and ultrasonic velocity 
anisotropy the complexity of modelling plastic behav- 
iour makes it extremely difficult to derive an analytical 
formula to demonstrate the existence of such a linear 
relationship. A different approach must therefore be 
suggested. 

From experiment it is known that both the ultra- 
sonic velocities, V, and the R-value are slowly varying 
functions in the plane of the specimen and therefore 
both can be well represented as Fourier series. Hence, 
to a good approximation, 

v - N  

V(c0 ~ V0 + ~ (V~cosw + W~sinvc 0 
v= l  
v=N 

R(e) ~ R0 + ~ (Rvcosvc~ + P~sinv~) 
v=l  

where V(e) and R(e) are evaluated in the plane of the 
sheet at an angle e from the rolling direction. If there 
exists a linear relationship between the V~ and Cff and 
also between the rv and Cff, then there should be a 
linear relationship between the V~ and rv. 

For all applications where rolling symmetry exists, 
the sin (vd) terms must be omitted. Furthermore, the 
odd cosine terms must also be omitted as a result of 
symmetry with respect to the transverse direction. 

Symmetry will therefore simplify the correlations 
between plastic behaviour and the ultrasonic velocities 
to the consideration of the even cosine coefficients of 
the expansions 
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Having presented a strong indication for a linear 
correlation between the same order coefficients of the 
plastic strain ratio and ultrasonic velocities, we pro- 
ceed to study its realization for the chosen theoretical 
models. 

In this work the theoretical values of the ultrasonic 
velocities and the plastic strain ratio were calculated in 
various directions on the specimen surface. These 
theoretical curves were represented as Fourier series 
and the series expansion coefficients of the same order 
were plotted for 28 different textures. The linear 
relationship was assumed between the corresponding 
Fourier components of the plastic strain ratio and the 
ultrasonic velocities. Each of the three velocity polar- 

Figure 1 Relat ionship between the second- 

o rder  Four ie r  coefficients of  the plastic 

strain ratio (r2) and  the vertical  shear  

velocity (V2 v) for 28 textures o f ( m )  copper ,  

(zx) a lumin ium,  ( O )  brass an d  (• iron. 

izations were considered: V L, the polarization along 
the direction of propagation; V H, the polarization 
direction perpendicular to the direction of propa- 
gation but in the plane of the specimen; and V v, the 
polarization perpendicular to the propagation direction 
and perpendicular to the specimen surface. Table I 
gives the slopes m for the appropriate relationships 
with the correlation coefficients 

r 
x y - x y  

- -  m 

[ ( x  2 _ ~ 2 ) ( y 2  _ y~ ) ] , /~  

used as a measure of how well the correlations hold 
(r = _+ 1 for a perfect fit and r = 0 if there is no 
correlation). Zero-, second-, fourth- and six-order 
Fourier series expansion coefficients were considered 
(see Table I). 

T A B L E  I Slopes (m) and  corre la t ion  coefficients (r) for the corre la t ion  o f  the Four ie r  coefficients o f  the strain rat io R(e)  with the 

velocities V[,) for iron and a l u m i n i u m  

Orde r  o f  Velocity polar iza t ion  

Four ie r  coeffs 
Long i tud ina l  Hor i zon ta l  Vertical* 

/ton 
2 m = 13.8 • 0.7 m = 61.5 • 11.5 

r = 0.9646 r = 0.7219 

4 m = - 12.0 ! 0.5 rn = 3.55 • 0.15 

r = - -0 .9794  r = 0.9775 

6 m = 57.2 • 4.0 m = - -22 .6  • 1.4 

r = 0.9430 r = --0.9501 

Aluminiurn 
2 m = 87.7 • 3.2 m = 2130 • 380 

r = 0.9834 r = 0.7402 

4 m = - -74 .5  • 2.8 m = 16.5 • 0.6 

r = --0.9821 r = 0.9818 

6 m = 2285 • 120 m = - -702  • 33 

r = 0.9670 r = --0.s  

m = - -4 .19  • 0.13 

r = - 0 . 9 8 7 4  

m = - -19 .4  • 0.6 

r = - 0 . 9 8 6 5  

* -  no correlat ion.  
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Figure 2 Graphical representation of  the 
second-order Fourier coefficients of  the 
plastic strain ratio (rx) and the longitudinal 
velocity (~L) for 28 textures of  copper. 

Excellent  cor re la t ion  was found  between r 2 and V2 L componen t s  o f  u l t rasonic  velocities exists: 
and  r 2 and  V2 v . Also  a very good  cor re la t ion  was found  

L L to exist between r 4 and V4 L and V4 H. Sixth-order  Four ie r  r2 = rn2 
series expans ion  coefficients o f  R and  V c and V H also 
cor re la ted  well. The  above  listed conclusions  were 
valid for  all four  meta ls  invest igated.  Only  the second- r2 = m v V2 v 
order  Four i e r  series expans ion  coefficients of  V v 
cor re la ted  well with the coefficients of  p las t ic-s t ra in  r 4 = m~ V4 L 

rat io.  The  rest d id  not ,  as one can see in Table  I. r 4 = m~ V4 H 

To summar ize  the results, there was good  evidence 
,'6 = V? 

that  the cor re la t ion  between the fol lowing com- 
ponents  o f  the s train rat io  R and the co r re spond ing  r 6 = m~ V6 H 
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Figure 3 Relationship between the fourth- 
order Fourier coefficients of  the plastic 
strain ratio (r~) and the longitudinal vel- 
ocity (V4 L) for 28 textures of  copper, 
aluminium, brass and iron. 
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Figure 4 Details of the correlation of the 
fourth-order Fourier coefficients of the 
plastic strain ratio (r4) and the horizontal 
shear velocity (V4 n) for 28 textures of  
copper. 

One can conclude from these results that there 
are three different ways to extract the second-order 
Fourier coefficient for the plastic strain ratio, and two 
independent ways to extract the fourth- and sixth- 
order series expansion coefficients from velocity data. 

For the purpose of applying the correlation results 
to the prediction of the angular variation of  R, the 
effect of the size of the series expansion coefficients 
and the accuracy of  their determination is of  consider- 
able importance. 

As already mentioned, the second-order coefficients 
of the ultrasonic velocities V c and V v correlate very 

well with the corresponding coefficients of the plastic 
strain ratio (for aluminium r = 0.83 and r = 0.98, 
respectively). 

The correlation for V2 v is illustrated in Fig. 1 for the 
four different metals. Additionally, the longitudinally 
polarized velocity coefficient V2 c for copper is related 
to the corresponding r2 coefficient as shown in Fig. 2. 
The second-order term of  the velocity with horizontal 
polarization does not correlate well with plastic strain 
ratio, having a correlation coefficient of about 0.7. 

There are also two possibilities to derive the fourth- 
order coefficients of the plasticity but, in contrast to 
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Figure 5 Correlation of the sixth-order 
Fourier coefficients of R(~)/Ro; and 
VH(~)/V0 H for 28 textures of (m) copper, 
(A) aluminium, (�9 brass and (x) iron. 
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the second-order coefficient, the vertical shear velocity 
cannot be used. Instead, the series coefficients V4 L and 
V4 H might be applied. Fig. 3 illustrates the correlation 
between r4 and V4 L for the four metals and in Fig. 4 the 
relationship between r4 and V4 H is presented. 

The sixth-order coefficients are, in general, much 
smaller than those for the fourth-order. The correlation 
of the plastic strain ratio with V6 H and V6 e is not as 
good as for the second- and fourth-order coefficients, 
r being between 0.88 and 0.97. V6 v cannot be used at 
all for the purpose of correlation (see Figs 5 and 6). 

From this discussion one can conclude that there 
exist several ways to predict the changes of the R-value 

Figure 6 Graphical representation of  the 
sixth-order Fourier coefficients of  the 
plastic strain ratio (r6) and the longitudinal 
velocity (V 6 L) for 28 textures of(D) copper, 
(zx) aluminium, ( ~ )  brass and (x) iron. 

using correlated Fourier series expansion coefficients. 
One way is to measure the ultrasound velocity having 
a polarization vector parallel to the propagation direc- 
tion. The velocities having other polarizations cannot 
be used individually, because the accuracy of predic- 
tion using V H or V v only is too low. This is illustrated 
in Fig. 7a where the variation of R value with ~ was 
predicted using Fourier coefficients for each of  the 
ultrasonic velocities independently, according to the 
formula 

= 1 q- m 2 V 2 c o s  2~ + m 4 V 4 c o s  4~  
Ro 

+ m6 [/6 COS 6~  
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Figure 7 Predictions of the anisotropy of  
the plastic strain ratio R(a)/Ro for the 
texture (1 10) [1 : 2] based (a) on independ- 
ent correlations with the velocities (zx) V L, 
(O)  V H and (x) V v, and (b) on an optimal 
mixed correlation (x). Results are com- 
pared to the sourze data values (D). 
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Additional typical results are compared to the theor- 
etical changes of R(e) in Figs 8a, 9a and 10a. Clearly, 
the longitudinal velocity gives the best prediction. 

The other velocity polarizations may give good 
estimations of the R-value anisotropy for certain types 
of texture; however, they occasionally may generate 
unrealistic results. Such cases are demonstrated in 
Fig. 10a where the prediction of  R(c 0 for the texture 
(100) [001] and (123) [121], from V v and V H 
respectively, leads to erroneous results. 

Only V L ultrasonic waves gave a consistently good 
prediction of  the R anisotropy in the plane of the sheet 
for all the examined textures. 
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Figure 7 Continued 

There is, however, still a good possibility of  obtain- 
ing further improvement in the accuracy of the predic- 
tion by using coefficients obtained from a mixture 
of various ultrasonic waves. As we have already men- 
tioned, the V v and V H ultrasonic waves cannot be 
used individually to predict the anisotropy of R, but 
very good agreement can be obtained from the follow- 
ing mixture of V v and V H coefficients. 

R(~) 
- 1 + m vV2 vcos2c~ + m4 HV4 Hcos4c~ 

R0 
+ rn6 H 116 H cos 6~ 

This expression allows us to predict with improved 

n 
[ ]  
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Figure 8 Predictions of the anisotropy of 
the plastic strain ratio R(e)/R o for the 
texture (1 2 3) [5 T l-] based (a) on independ- 
ent correlations with the velocities (zx) V L, 
(O) V H and (x) V v, and (b) on an optimal 
mixed correlation (x). Results are com- 
pared to the source data values (121). 
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Figure 8 Continued 

accuracy the anisotropy of R for all 28 chosen textures. 
Examples are provided in Figs 7b, 8b, 9b, and 10b. 
This selection of velocity coefficients was made taking 
into account the best fit between the corresponding r,. 
and V,. coeff• as well as the magnitude of their 
contribution to the relevant ultrasonic velocity. 
Explicitly, the equation is composed of terms involv- 
ing V2 v, V4 v and V~ H which do not exhibit better corre- 
lation than the corresponding V L terms. In these cases, 
however, the appropriate slopes, m (see Table I), 
are much lower, implying that the size of ultrasonic 

velocity coefficients are higher than those of V L, and 
therefore more easily determined. 

All predictions for the anisotropy of the plastic 
strain ratio have been expressed in the relative units 
R(cO/Ro, where R0 is the zero-order coefficient of the 
Fourier series expansion, representing the average 
value. A question that might be asked is whether it is 
possible to predict this average value of R from ultra- 
sonic measurements. Texture is responsible for aniso- 
tropy so that in principle only the anisotropy of R can 
be derived from the anisotropy of the ultrasonic 
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Figure 9 Predictions of the anisotropy of 
the plastic strain ratio R(~)/R 0 for the tex- 
ture (100) [001] based on an optimal 
mixed correlation (x). Results are com- 
pared to the source data values (rn), 
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Figure lO Predictions of the anisotropy of 
the plastic strain ratio R(cO/R o for the 
texture (1 2 3) [1 2 1] based (a) on independ- 
ent correlations with the velocities (/,) V L, 
( �9 V H and (x) V v, and (b) on an optimal 
mixed correlation (x). Results are com- 
pared to the source data values (O). 
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velocities, not the average value. However, R0 for 
various selected textures also displays some relation 
to the average value of  the ultrasonic velocity. This 
relationshi p is illustrated in Fig. 11 for iron and 
aluminium, where a linear relationship exists only for 
a limited interval of  velocities. 

For a vertical shear velocity lower than 3200 m sec 1 
in steel and a longitudinal velocity higher than 

6585 m sec 1 in aluminium the functional relationship 
between the average R-value and the average velocity 
fails to hold and a sort of  branching phenomenon is 
observed. Attempts to correlate R 0 with V0 H for the 
different metals were also not fully successful. Never- 
theless, a limited correlation was observed which 
might be valid for the estimation of  R0 from a restric- 
ted interval of  ultrasonic velocity measurements. 
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